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SUMMARY 
The evolution of small finite non-symmetric initial disturbances governed by the Navier-Stokes equations is considered. 
Only the contact region is discussed here. The linearized theory is shown to break down and a system of coupled 
equations is shown to govern the nonlinear contact region. Contrary to the linear theory, the effects of vorticity and 
entropy are now intertwined. The theory resembles that of an incompressible fluid in two and three space dimensions. 

1. Introduction 

The work presented here represents a continuation of two earlier studies [1] and [2]. Reference 
[1] considers the evolution of infinitesimal disturbances of a viscous heat-conducting gas in 
two and three space dimensions while reference [2] considers the finite amplitude effects, that 
is, nonlinearities in the case of two and three dimensions for radially symmetric initial data. 

In general, initial disturbances resolve themselves into two modes, a signal traveling away 
from the source of disturbance with a speed related to the local fluid velocity and speed of 
sound and a relatively slow moving disturbance traveling at the local fluid velocity. The latter 
mode is called the contact region and carries the vorticity and entropy perturbations. 

In this paper, we study the development of small but finite non-symmetric initial disturbances 
in two and three dimensions. Furthermore we focus our discussion on the contact region. The 
case of the wave region has been dealt with in [3] and [4]. Whitham [3] considered the evolution 
of weak shocks for non-symmetric explosions based upon the method of geometrical acoustics, 
Varley and Cumberbatch [4] studied the general nonlinear theory of wave-front propagation. 
As an example, they applied their theory to non-symmetric explosions verifying Whitham's 
results. In both cases, the solutions in the wave region depend upon the principle radii of 
curvature of the wave front. Thus the wave region will not be discussed further. 

In [1], where the linearized theory is dealt with, the contact region is shown to decouple 
into two parts, an entropy perturbation structured by heat conduction and a vorticity per- 
turbation structured by viscosity. For  the case of radially-symmetric initial data [2], only an 
entropy perturbation is produced. Vorticity is absent from the flow field. The contact region is 
governed by the two and three dimensional heat equation and dependent upon heat conduction 
only. However if the initial velocity is non-symmetric, a shearing motion occurs leading to the 
production of vorticity governed by a diffusion equation initially. 

The problem was first looked at by Lagerstrom, Cole and Trilling [5] for linearized theory. 
In their study, they showed that the linearized Navier-Stokes equations may be split as the 
sum of a longitudinal wave (wave region) plus a transversal wave (contact region). This was 
carried out in the absence of heat conduction. The longitudinal waves are irrotational while the 
transversal waves are incompressible. They show that within the linearized theory, the propa- 
gation of vorticity is independent of compressibility. This is again verified by our study. 

We restrict attention to the three dimensional equations of motion stated in Section 2. The 
two dimensional results are given in the appendix for completeness. The one dimensional case 
has been treated previously 1-7] and [8]. We wish to find the analogous nonlinear theory to 
the heat equation. Our approach is based on the method of multiple scales [6]. In Section 3, 
we develop the linear theory from a different point of view than [1]. Ifr represents the smallness 
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parameter, we show that the linear inviscid theory breaks down for t = O (e-1) at which time 
the nonlinear terms become important. The nonlinear theory follows as a consequence of the 
breakdown of linear theory. This derivation is given in the framework of a systematic pertur- 
bation procedure and leads to explicit forms for the governing equations. It is shown in 
Section 5 that a uniformly valid solution to first order is described by a system of two coupled 
equations. The vorticity is governed by the well known two and three dimensional vorticity 
equation o fincompressible fluids while the density and temperature are described by an equation 
of similar form which may be solved once the velocity is uncoupled. Contrary to the linear 
theory, vorticity and entropy are now intertwined. 

The theory is of practical interest il~xplosion problems. For explosions, a very large distur- 
bance of air is desired, thus only the behavior of the theory for large times would be of value 
once the disturbances have become weak. The problem is interesting mathematically in that 
the results depend upon a double application of the Fredholm condition. 

2 .  E q u a t i o n s  o f  m o t i o n  

Introducing the vector notation 

-= I~O-b l) 

where % represents the undisturbed flow, the three dimensional normalized equations of 
motion for the perturbation quantities v = (p, u, v, w, T) are 

~ a a ) v = x(~)+ r(o+z(~) (1) 

where 

B = i 
1 0 0 0  

0 0 0 Z  

0 0 0 0  

0 0 0 0  

z 0 0 o  

OiOlO 0 0 0 0  

, C =  1 0 0 0  , D = 

0 0 0 0  

0 Z 0  

lioo i 0 0 0 0  
0 0 0 0  , 

O 0 0 Z  
OOz 

x ( O  = - 

- Ou Ov ?w 9p 

au Ou Ou au 

~3v Ov ~3v ~v e ~  + u ~ + ~ y  +w~ +zp 

~w ~w 0w ?w 

~?T ~T 0T dT 
p ~ - +  u ~ +  ~ ?)-y + w W + z ;  

~W Z2 gu ~u + Z P ~ z  + T~x  + z2T y 

ap G- ~+w~ 
aT ap ~+ zr~ 
OT Op 

OT Op ~+ zT~ 
gu ~v 

aw 
-F x 2 T ~  
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with 

Y(v) = 

O 

, ~2 u { ~ u 0 2 u )  0 ~ v 0 ~ w 

( r  + ~\TTy ~ + ~ /  + ; ~ +  ~ ~ z  

(r + " \ e ~  + ~z ~) + ~ ~ y  + ~ ~ 
�9 

,(( + ") ~Zz ~ + n \ Ox ~ + ey~; + ~ ~ z z  + ~ ~TU~ 
0 z T 0 2 T 02 T ~ 

_ ~ ~ x ~ + ~ y ~ + ~ z ~ /  

( = r / + 2  - f l+ (4 /3 ) /~  /~ ( = 
poao L ' rl - P~176 L ,  pocvao L" 

The  vector  function X represents the quadrat ic  inviscid terms, Y the linear dissipative terms 
and Z the remaining higher order  terms. The  dissipative parameters  are taken constant ,  since 
their variat ion does not enter in the per turba t ion  procedure  in t roduced  later on. The  normaliz-  
at ion is that  used in [1],  in part icular  Z=(7 - 1) ~, where ? is the ratio of specific heats and ( is 
a reciprocal Reynolds  number  based on an unspecified length scale L. 

3. First order t h e o r y - - I n v i s c i d  

Neglecting dissipation for the moment ,  we consider the inviscid equations.  If e represents the 
strength of our  initial disturbance, i.e. v ( t = 0 ) =  e v~ concentra ted  in a finite domain,  we 
formally expand 

v = (p, u, v, w, T) = v 0 + ev I + e 2 v: + . . .  (2) 

where % = ( 1 ,  0, 0, 0, Z - I )  and all lengths are normal ized  with respect to a representative 
wavelength of  the disturbance. F r o m  (1), the lowest order  equat ion is 

~ + B u + C y y + O T z  ~1=0.  (3) 

Since we are interested in the contact  region only, it is convenient  to decompose  the flow in a 
way natural  to the equations. In t roducing the eigenvalue 2 i and eigenvectors ! i of  

I 2 i l ' =  3 - ~ ( B + C + D ) I  i (i = 1, 2, 3, 4, 5) 

a direction calculation shows 

21 = 0 la = (Z, 0, 0, 0, - 1) 

2 2 ~--- 0 l 2 = (0, 1, -- 1, O, O) 

2 3 = 0 I 3 = (0, 1, 1, --2, O) (4) 

24 = 7 ~ 14 = (1, (7/3) ~, (7/3) -~, (7/3) ~, Z) 

25 = - - ~  t s = (1, --(~/3) ~, - (y/3) ~, - (7 /3 )  -~, X) 

where the l ~ are or thogonal ,  i.e. i ~- P = 0 ,  i4:j. 
The  first three vectors can be associated with the contact  region while the latter two are 

associated with the wave region. We further note  that  12 and 13 did not  occur  for radially- 
symmetric  initial da ta  (see [2]).  

In general, we seek a solution of the form 

01 = li F1 +12 F2 + Ia Fa +14 F4 + lS F5 
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where 
I i vl  

F, = ii . ll ( i= 1 ... . .  5). 

However since we are interested in the contact region only, we look for solutions in the limit 
t ~  oe, x bounded, i.e. 

V 1 ~ t -p~ {llfl(X, y, Z)+12f2(x, y, Z)+ ...+lSfs(x, y, Z)} 

+ t -p2 {lag1 (x, y, z)+12~]2(x, y, z)+ . . .  +lSgs(x, y, z)} + ... (5) 

where 0 <  pa< p2< ... and some of the f ' s  and g's may be zero. Substituting into (3) and 
multiplying from the left by ! i (i = 1, 2 . . . . .  5), we obtain 

i = 1  0 = 0  

0 7 s  
i = 2 ? ~xx (f4 +,/s) = ~y (f4 +fs)  (6) 

i = 3  7 ~x (f4 +fs)  -+- @(./` ,+fs)=27-~z,( f4+fs  ) (7) 

i 4 7 (~x  ~@) .fie+ 7 (fix ~ ~-z) (7-)} ( ~  c3 ~-z) = + ~ y y -  2 , f 3 + 2 7 \ 3 /  \ 8 x  + ~yy + .f4=O (8) 

i = 5 ? f2 + + - 2 ,f3 - 27 \ 3 / -  + + .fs = 0 (9) 

To analyse the system (6)-(9), we restrict attention to solutions which vanish as x 2 + y2 + z2__~ oo 
or more strongly from energy considerations, we may take only square integrable functions. 
Subtracting (9) from (8) and combining with (6) and (7), we find that 

f , (x ,  y, z) = - f s (x ,  y, z). (10) 

Using (10), the above system of equations reduces to (8) or written alternatively as 

c~0 + f 3 + 2  ~ +cyO - f z + 2  .t~, + ~zz +2  .f,~ = 0 a 

This takes the form of a divergence, i.e. 

V'O = 0 where 0 = (01, 0 2, 0 3) (11) 
and 

0 * = . A + f 3 + 2  f4,  0 2 = A - f 2 +  2 f4 ,  0 3 =  -2./ '3+2 f4.  

It will be shown later that these are the components of velocity in the contact region. Equation 
(11) implies the existence of a vector potential 

0 = V • A , A = (Aa, A >  A3)  . 

It can be shown that 
1 (~A 3 OA 2 OA 1 

f2 = ~ \ ~  ~z Oz 

1 (~A 3 0A2/+ 6qA1 
f3 = ~ \ ?y & & 

1 (0143 
f* = - f s  - 6(7/3) ~ \ ay 

& / =  ,/, + 

aA3 
c~x 

0A2 + 
az 

1 
6(7/3)+ ( 01 + 0 z --}- I / / 3 )  . 

~ A  2 c~A 1~ 
27-~- x + 2 ~ )  = 1 ( 0 1 + 0 2 - 2 0 3 ) ,  

aA, OA 3 aA 2 (~A1 ~ 

(12) 
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We can now rewrite (5) as 

i) 1 = t -p1  {11f1 + ~kx ix+ ~2 ly+ if/3 1 z } _~_ 0 ( t - P 2 )  , (13)  

where IX= (0, 1, 0, 0, 0), I y = (0, 0, 1, 0, 0) and I z= (0, 0, 0, 1, 0). It is at this point that qt is re- 
cognized as just the velocity in the contact region. Thus we have reduced the solution to four 
arbitrary functions f l ,  ~ bl, ff2, ~93 which may be obtained from the fundamental solution of the 
linearized Euler equations (see [1]). 

We make the observation from (11) that the vorticity part of the contact region is basically 
incompressible. This was observed earlier by Lagerstrom, Cole and Trilling [5], that is within 
the linearized theory, the propagation of vorticity is independent of compressibility. 

To determine PI, we consider the second order equation found by substituting (5) into (3). 
Setting P2 =P l  + 1, we have 

-pl{l l f l+OllX+t~21'+O31z} + ~x + Oy + O~z  { l l g l + 1 2 g 2 + ' " + l S g s } = O "  

Multiplying from the left by ! l'x'r'z respectively, we find that for a nontrivial lowest order 
solution, px =0.  The g's will then satisfy equations of the form (6)-(9). Thus the lowest order 
solution is 

v 1 ,,~ l l f l  (x, y, z)-~-ffJ 1 (X, y, z) lX+~2(X, y, z)lY-b-~ll3(x, y, z)l z . 

It is clear that succeeding orders will depend on solutions of the nonhomogeneous form of 
(6)-(9). Before g(~ing into the detailed solution, we first consider this set of four equations and 
write them symbolically as 

yLw = G,  (14) 

where L is the symmetric linear operator 

L = 

0 8 x -  O r 

0 8x + Oy- 20z 

8x-Oy 8x+Sr -28z  2(~/3)�89 

[_~8x-8 r 8~+8y-28~ 0 

8 x -  8r ] 

8x+00-20z  ~ 

- 2(7/3)  (0x + e ,+  0z)J 

and w and G are both four vectors. (We have suppressed the ! 1 component of v for the moment 
since it plays no role in this current discussion.) We recall that for G = 0, it was demonstrated 
that Lw = 0 has a nontrivial solution representable in terms of Ai or equivalently Oi (i = 1, 2, 3). 
This suggests that (14) can be solved if and only if the Fredholm condition is met. To be more 
specific, let us consider the inner product defined by 

fff oo 

where a = (al, a2, a3, a4) and b = (bl, b2, ba, b4). Since we are only considering square-integrable 
functions, it follows that 

(c, Lw) = - (w, Lc) = (c, G) .  

Therefore the condition of solvability of (14) is that 

(r c )  = 0 ,  (15) 

where c is an element of the subspace of solutions o f L w =  0. In fact, we have demonstrated that 
such an c exists in the form given by (12). 

Hence condition (15) for G=(G1, G2, G3, G4) may be shown to be 
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fff~176 I { 10G 1 10Gz IOGz 1 OG3 
A~ - ~  ~ + g & - z  + 3 ~ - y  +6(7/3)  r ~z 

- o o  

1 (?G3 1 ~G, 1 ~G4~ 
6(7/3) ~ 0y 6(7/3) ~- c ~  + 6(7/3) ~ ~y ) 

1 OG1 1 ~G2 1 ~3Gz 1 ~G 3 

+ A2 - 2  c3z 6 0z 3 0x 6(7/3) ~ ~z 

1 63G3 1 (~G 4 1 0G, f 
+ 6(7/3) ~ ~x + 6(7/3) ~ c3z 6(7/3) ~ 0z ] 

~lc3G 1 lc3G 1 lc3G2 l ~ G z  
+ A 3 ( 2  0y + 2  0~x + 6 0 y  6 0 x  

1 OG 3 1 OG 3 1 OG4 1 00G4} ] 
+ 6(7/3) ~ c3y 6(7/3) ~ 0x 6(7/3) ~ 0y + 6(7/3) ~ dxdydz  : 0 

after an integration by parts and a regrouping of terms. Since A~, A 2, A 3 are arbitrary scalar 
functions, we must have that the integrands inside curly brackets vanish identically or 

1 
(~zG 1 1 "~ -~(2% + (3=) G2 3 (7/3) r ((3~- 0y) (G3 - G4) : 0 ,  

1 
&_G~+�89 3(7/3) ~ (~x-~z)(G3-G4) = O,  (16) 

1 
( e , + e ~ ) o l + } ( ~ , - e ~ ) o :  + ~ ( ~ , - ~ ) ( O 3 -  o,)  = 0.  

Thus in order to solve the nonhomogeneous equations (14), G must satisfy the above equations. 
At this point we see that the restriction of square-integrable functions can be relaxed. In fact 
(16) only requires G to be differentiable. 

4. Second order theory--lnviscid 

We regard the expansion of va as known and return to the solution of the inviscid form of (1) 
under the expansion (2). The second order equation obtained by substituting (2) into (1) is 

+ B ~ + c 0y + o N ~2 = x ( H  (171 

in which it is to be recalled that X is quadratic. The solution ez will consist of a homogeneous 
solution of the same form as vl plus a particular solution. 

We expand v z in the same form as Vl, i.e. 

o2 = t 1 H1 (x, y, z, t ) +  t 2/-12 (x, y, z, t ) + . . .  + t ~ H5 (x, y, z, t) .  

Substituting (18) into (17) and multiplying from the left by l ~ yields 

Hx (x, y, z, t) = _1 (/1./(i)l))t  ' 
7 

which gives rise to secularity as t--> 0o. For ! i (i = 2, 3, 4, 5), we obtain [] [12i] 6' C3 13 
~t H + TLH = 

i 4 
27 15 . 
27J 

(18) 

(19) 
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We attempt to solve (19) by expanding H=(H2, 143, H4, Hs) for large t as 

H = h(x, y, z)+o(1),  (20) 

i.e. assuming time independent to lowest order. Then to lowest order, (19) gives 

7Lh = G, (21) 

where 

h = ( h > h  3,h4,hS) and G : ( I  2"X,! 3.X,14"X,15.X).  

However, (21) has no solution because the solvability conditions (16) cannot be met. We 
therefore rewrite H as 

H = th (x, y, z )+k(x ,  y, z)+o(1) (22) 

as t~oo.  After substituting (22) into (19) we can rewrite the equations symbolically as 

?tLh+ yLk  = G + M  , (23) 

where M =  ( - 2 h  2, -6h3,  -27h4, -22h5) and G is as above. The lowest order equation from 
(23) is Lh=O which we showed earlier (see (12)) has solutions of the form 

h2 = �89 -~b2), h3 = -~ (~b1+q52-2~b3), h, = - h  5 = 6(y/3)-+(q9 +q52+q53), 

with ~b = V x ,~ undetermined. At the next order 

7Lk = M + G .  (24) 

Equation (24) is not solvable unless 

(,, 0, (25) 

where s is a nontrivial solution of Ls = 0. The compatability condition (25) is equivalent to 
(16) and thus gives a relation between ~b and q, of v a which is assumed known. This then permits 
a solution to (24) and the process may be continued. 

The main conclusion of the above is that secularity appears at the second order since 

v = Vo+~O(1)+~20(t)+ ... 

as t ~  0o. Hence it indicates that a new scale Z = et will be required. 

5. Method of multiple scales--Nonlinear description 

To overcome the breakdown of linear theory for large times, we employ the method of multiple 
scales [6]. A solution is sought in the form 

I) = V0"~-glP 1 "1-/-/(g)IJ2 " t - . . . ,  (26) 

where #(e)=o(0 as e-+0, and 

ri = vi(x, y, z, t; ~), 

where x, y, z, t are fast variables and z = et is a slow scale. 
The region of interest is now specified by the conditions x, z fixed with e--,0. Substituting (26) 

into (1), the lowest order equation is again (3) and the solution is given by 

el "~ l i f t (x ;  z)+Ut~l(x;  z)+l'~k2(x; z)+lZ03(x; z) ,  

where q* =V x A. As indicated, the slow dependence on z is still unknown. At the next order, 
we obtain 

kt(e) ~ + B ox + C ~y + O ~z r2 ~ + X(v,)  + eY(v , ) .  (27) 
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We point out that Y(v~) is usually small except in regions of high shear where it can be shown 
that all terms on the right-hand side of(27) are comparable. This involves rescaling the problem 
with respect to the Reynolds number R, i.e. ~ = v (e, t, R). Rather than doing this, we attempt a 
uniform description by retaining all the leading terms in passing from the inviscid through 
dissipative zones. See [2] for further comments. 

Setting both sides of (27) to the same order, we have ~(e)= e2. Next decompose v2 into its 
characteristic modes 

V2 = 11 H1 + 121t/2 + 13//3 + 14/-/4 + 15 Hs.  (28) 

Substitute (28) into (27) and multiply by I i (i = 1 . . . .  ,5) from the left. For ! 1, we obtain 

? ~-OH1 = 11" [ -  Or va + X (v , )+  ~ - ~ Y(vl)] . (29) 

Since the right hand side of (29) is independent of t, we can integrate directly to obtain 

H1 = O (t) a s  t - - .  oo  . 

To suppress this secularity, we set the right-hand side of (29) equal to zero. This can be shown 
to reduce to 

all 

For i = 2, 3, 4, 5, we obtain the following set of equations 

[] ::]' ' 6 ? •vl 

,27 ? t H + T L H  = l 2. - ~  + X + e - l r  (30) 

27 I s '  

From calculations of Section 4, we note that secularity appears if we assume an expansion for 
H in the form (22). To avoid this difficulty, we would like to expand H in the form (20), i.e. 

H(x ,  t; ~) = h(x)+o(1)  as t ~ o o .  

Then (30) reduces to 7 Lh = N. In order for a solution to exist, we now utilize the dependence 
of N on -c to impose the solvability conditions (16). The result is 

L (v• 0 ) + v  • { ( 0  v)0)  = ~ - l~v  • (v20). (3a) & 

Defining the vorticity vector by 

o = V x O ,  

(31) can be rewritten as 
0o~ 
eV + (O.v)o , - ( , , . v )0  = ~-tuv2,o,  

which is just the three-dimensional vorticity equation. 
Regarding e simply as a formal small parameter now and eliminating it by setting ~ = 1, we 

conclude that the nonlinear description of the contact region for a non-symmetric initial 
disturbance is governed by 

Of, + qt. Vfl = -~ V2.fl 
Ot 7 

and 
Oto 
a~- + (O .v )~ - (~ , . v )o  = ~v%,. 

(32) 

(33) 
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Contact reyion for non-symmetric initial disturbances 331 

Equations (32) and (33) provide a uniformly valid first order description of the contact 
region. The contact region is governed by a system of coupled equations. Contrary to the linear 
theory, the effects of viscosity and heat conduction are now intertwined. If the velocity un- 
couples from the vorticity equation (33), then density and temperature may be solved from 
(32) once r is known. 

We further note that if the initial velocity is zero or in the radial direction only (i.e., v = v (r)), 
no vorticity is produced and ~ -= 0 in the contact region so that the above equations reduce to 

aJ] _ ~V2fl ' 
& ? 

which is the linearized result found in [1] and [-2]. The solution is given in [-1] so no further 
discussion is necessary. 
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Appendix 

For the sake of completeness, we outline the two-dimensional calculations below. Suppressing 
w, z and letting v =(p, u, v, T) denote perturbations, the equations of motion are 

( )v= x(vt+ Y( /+z(vt ~ + 8 ~ + c ~  

Letting 

I~ = i ) 0 2 V ~ l O l ' q - g 2 V 2 + . . .  , 

the lowest order equation is 

~ + B ~ + C  ~ = 0 .  

Denoting the eigenvalues and eigenvectors by 

I2il  i = 2 -~ (B+C) l  i, 

we find 

21 = 0 

22 = 0 

23 = y} 

24 = _ 7~ 

l* = (z, 0, 0, - 1) 
! 2 = (0, 1, -- 1, 0) 

l a = (1, (?/2} ~, (7/2) ~, Z) 

! 4 = (1, -(?/2) ~, - (7/2) }, Z) 

where again I i. U= 0 (ir 
Following the same procedure as before, it can be shown that 

vl = {Pf~(x,  y)+l  x 
&b 
~ y -  ! y ~ x } +  O(t-x) ,  

where r is a streamfunction. 
The condition for solvability of 7 Lw= G is that G satisfy 

(ax+e,)G, + ~ ( a , - < ) ( ~ 2 - G 3 ) =  o.  

Carrying out the procedure identidal to Section 4, we find that secularity appears at the second 
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order ,  i.e. 

r = r o + ~ O ( 1 ) + e 2 0 ( t )  as t---,oo. 

H e n c e  again ,  we use the  m e t h o d  of  m u l t i p l e  scales where  z -- et. S u p p r e s s i n g  the secular i t ies  a n d  

se t t ing  e = 1, we f ind tha t  

~fl (w v)A a - T +  �9 = v 2 f t ,  

_~ (v2~,)+(w. v)v2~,  = ~ v 2 ~  , 
~t 

where  w=(~by, -~b~)  an d  V = ( 8 ~ ,  By). 
I f  we def ine  a vor t ic i ty  vec to r  by  09=(0,  0, co) a n d  set  o ) = V  • w, we f ind  t o =  - V 2 r  H e n c e  

o u r  e q u a t i o n s  m a y  be rewr i t t en  as 

all 
G + (w. v)ft  = ~/~,vV~ 

a n d  

O-T + (w.V)o = ~tV2~o. 

The latter is precisely the two-dimensional vorticity equation. 
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